4 flute solid carbide flat end mill

4 flute solid carbide flat end mill

Flat Carbide End Mill offered allows perfect execution of the work and feature centre cutting straight flutes. With these end mills suitable for slot and form milling applications, these tools and construction material are specially designed for HSC and made available with 2/4 fluted center cutting, CNC grinding and helix angle of 30 degrees. These can be offered with different cutting & shank diameters and feature different flute and overall lengths.

  • Description
  • Inquiry

Features:

Allows perfect execution of the work

Featuring centre cutting straight flutes

These Ball nose end mills are suitable for slot and form milling applications

Tools and construction material specially designed for HSC

Can be offered with different cutting & shank diameters

Also featuring different flute lengths and overall lengths

Applications:

For milling of cast iron

Malleable cast iron

Steel & steel casting

Heat resisting steel

Plastics in design & profile manufacturing

Cutting tools come in a range of sizes, materials, and geometry types.

It is generally more efficient to use a combination of different toolpaths and tools to achieve a detailed model rather than assuming that a small tool with a smaller stepover is the only way. Often, a larger tool can achieve better finish results.

In end milling, the cutter generally rotates on an axis vertical to the workpiece. Cutting teeth are located on both the end face of the cutter and the periphery of the cutter body.

A ball nose end mill, also known as a spherical end mill or ball end mill, has a semisphere at the tool end. Ball nose end mills are used on workpieces with complex surfaces.

Choosing flat end mill vs. a ball end mill will determine the characteristics of the tooling marks (or lack thereof) on your model. Most jobs will benefit from strategic use of multiple size and shape tools for milling different features. End Mills are often used for roughing and 2D cutting and V-Bit and Ball Nose cutters are often used for finishing operations.

CENTER High Performance 4 flute solid carbide flat end mill

End geometry

There are up-cut, down-cut, compression cut end mills with varying numbers of flutes. End mills are intended to cut horizontally.

Up-cut, down-cut and compression cut determine the way the chips (cut material) are ejected and the smoothness of the surface. With an up-cut end mill, the chips will be ejected upward and the bottom of the material will be smooth. The down-cut end mill is the reverse by puching the chips downward and the top of the material is smooth. The compression end mill creates a smooth surface on top and bottom, which is perfect for pre-laminated woods.

End mills come in a variety of shapes. The most common are flat end mills and ball end mills. Flat end mills will cut flat areas with no scallops. However, they leave a terrace-like scallop on non-flat surfaces. Ball end mills will leave smaller scallops for the same stepover value on sloped surfaces, but they will also leave scallops on flat areas.

Models can be tooled with a combination of flat and ball end mills. If only one tool will be used for all surfaces a ball end geometry will give a more consistent overall feel and smooth result.

Flat end mills can be Center Cutting and Non Center Cutting: Center cutting square endmills are essential for plunge milling. Non-center cutting mills are used only for side milling.

CENTER High Performance 4 flute solid carbide flat end mill

When choosing a ball end mill always chooses the largest size available. For the same stepover, a larger tool will leave smaller scallops, thus giving a smoother result. For a generally smooth model with some areas of fine detail, a large tool should be used for the overall job and a smaller tool should be used only to clean out detailed areas.

Larger tools cut more cleanly, have larger clearance, and stay sharp longer. The velocity of the cutting edge on a larger tool is higher for the same spindle speed.

Stepover

Stepover is the distance the tool moves over between subsequent passes.

The stepover value (along with tool size) will determine whether the model has a smooth finish, or tooling marks are visible. It will also directly impact cutting time. Models with a smaller stepover take longer to cut.
CENTER High Performance 4 flute solid carbide flat end mill
 

Stepdown

The length of the cutting area within the tool determines how deep the material can be cut in one operation –this is called the maximum stepdown. This stepdown value will only be used to its maximum when the material that is being cut is soft; for harder materials a smaller value is often required, setting the toolpaths to mill away layers of materials in separate passes.

Flute geometry

While the number, direction and type of flutes that a cutting tool has can vary widely, the tools most commonly used have two flutes and are up-cut spirals.

Some projects may benefit from other types of flute geometry. Contour cutting MDF or plywood sheets would benefit from down-cut spirals as the tool would push the material against the CNC machine table as it cuts rather than lift it.

CENTER High Performance 4 flute solid carbide flat end mill

Number of Flutes

Single Flute – Allows for larger chiploads in softer materials

Double Flute – Allows for better part finish in harder materials

Multiple Flutes – Allows for an even better part finish in harder materials

As the number of cutting edges increases, your feed rate should increase to prevent burning and premature tool dulling. More flutes reduce chip load and improves surface finish if feed rate remains the same. The most common flute numbers for general milling operations are two (better space for chip ejection) and four (better surface finish).

Examples of applications using end mills:

CENTER High Performance 4 flute solid carbide flat end mill

 

 

Capillary Stainless Steel Tubes      Seamless Stainless Tubes & Pipes   

Welded Stainless Tubes & Pipes    Nickel Alloy Tubes & Pipes

EN10305-1/4  Seamless  Steel  Tubes     EN10305-2/3 Welded Precision Tubes       

ISO8535-1 Fuel Injection Tubes        Single/Double Wall Bundy Tubes             

Seamless Honed/SRB Tubes & Pipes        A210/A179  Boiler & Pressure Tubes

Aluminium Tubes & Pipes     Brass/Copper Tubes & Pipes     

Titanium Tubes & Pipes         Non-ferrous Capillary Tubes

Contact Us